Web Security Overview
Not supported
HTTPS

Web sites need to use encryption to help their visitors know they're in the right place, as well as provide confidentiality and content integrity. Sites that don't support HTTPS may expose sensitive data and have their pages modified and subverted.

For all sites VERY IMPORTANT medium EFFORT
Email Security Overview
Supported and well configured
STARTTLS

All hosts that receive email need encryption to ensure confidentiality of email messages. Email servers thus need to support STARTTLS, as well as provide decent TLS configuration and correct certificates.

For all sites VERY IMPORTANT low EFFORT
Supported and well configured
SPF

Sender Policy Framework (SPF) enables organizations to designate servers that are allowed to send email messages on their behalf. With SPF in place, spam is easier to identify.

For important sites IMPORTANT low EFFORT
Not supported
DMARC

Domain-based Message Authentication, Reporting, and Conformance (DMARC) is a mechanism that allows organizations to specify how unauthenticated email (identified using SPF and DKIM) should be handled.

For important sites IMPORTANT low EFFORT

DNS Zone

The global DNS infrastructure is organized as a series of hierarchical DNS zones. The root zone hosts a number of global and country TLDs, which in turn host further zones that are delegated to their customers. Each organization that controls a zone can delegate parts of its namespace to other zones. In this test we perform detailed inspection of a DNS zone, but only if the host being tested matches the zone.

Test failed
We've detected serious problems that require your immediate attention.

Nameserver Names

Nameservers can be referred to by name and by address. In this section we show the names, which can appear in the NS records, the referrals from the parent zone, and the SOA record. In some situations, servers from the parent zone respond authoritatively, in which case we will include them in the list as well.

Nameserver Operational IPv4 IPv6 Sources
ns1.r4l.com. PRIMARY
142.4.204.181
2607:5300:60:34bf::1
The server is online. Name resolves to an IPv4 address. Name resolves to an IPv6 address. SOA REFERRAL
ns2.r4l.com.
66.228.40.6
2600:3c03::f03c:91ff:fe93:e369
The server is not fully operational or refuses to serve this zone. Name resolves to an IPv4 address. Name resolves to an IPv6 address. NS REFERRAL

Nameserver Addresses

This section shows the configuration of all discovered nameservers by their IP address. To find all applicable nameservers, we inspect the parent zone nameservers for names and glue and then the tested zone nameservers for NS records. We then resolve all discovered names to IP addresses. Finally, we test each address individually.

Nameserver Operational Authoritative Recursive UDP TCP Sources Payload Size
142.4.204.181 PRIMARY
ns1.r4l.com.
PTR: mxgw.r4l.com.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME, GLUE 4096
66.228.40.6
ns2.r4l.com.
PTR: ns2.r4l.com.
The server is not fully operational or refuses to serve this zone. Nameservers did not respond authoritatively to all queries Nameserver doesn't provide recursive service No response to UDP queries No response to TCP queries NAME, GLUE -
2600:3c03::f03c:91ff:fe93:e369
ns2.r4l.com.
PTR: ns2.r4l.com.
The server is not fully operational or refuses to serve this zone. Nameservers did not respond authoritatively to all queries Nameserver doesn't provide recursive service No response to UDP queries No response to TCP queries NAME, GLUE -
2607:5300:60:34bf::1 PRIMARY
ns1.r4l.com.
The server appears to be online. Nameserver provides authoritative responses Nameserver doesn't provide recursive service Nameserver responds to UDP queries Nameserver responds to TCP queries NAME, GLUE 4096

Start of Authority (SOA) Record

Start of Authority (SOA) records contain administrative information pertaining to one DNS zone, especially the configuration that's used for zone transfers between the primary nameserver and the secondaries. Only one SOA record should exist, with all nameservers providing the same information.

The domain name of the primary nameserver for the zone. Also known as MNAME.Primary nameserver ns1.r4l.com.
Email address of the persons responsible for this zone. Also known as RNAME.Admin email support.register4less.com.
Zone serial or version number.Serial number 1754214040
The length of time secondary nameservers should wait before querying the primary for changes.Refresh interval 3,600 seconds (about 1 hour)
The length of time secondary nameservers should wait before querying an unresponsive primary again.Retry interval 1,800 seconds (about 30 minutes)
The length of time after which secondary nameservers should stop responding to queries for a zone, assuming no updates were obtained from the primary.Expire interval 604,800 seconds (about 7 days)
TTL for purposes of negative response caching. Negative cache TTL 3,600 seconds (about 1 hour)
Time To Live (TTL) indicates for how long a record remains valid. SOA record TTL 10,800 seconds (about 3 hours)

Analysis

Error
Nameserver is not operational
We were not able to obtain any valid responses from this nameserver. This means that the server is either offline, or that the DNS configuration is wrong. In the latter case, someone taking over control of this server could lead to nameserver takeover. Check if the IP address of the server is provided only via glue. In that case, the nameservers in the parent zone are misconfigured.

Address: 66.228.40.6

Reverse name: ns2.r4l.com.

Name: ns2.r4l.com.

Error
Nameserver is not operational
We were not able to obtain any valid responses from this nameserver. This means that the server is either offline, or that the DNS configuration is wrong. In the latter case, someone taking over control of this server could lead to nameserver takeover. Check if the IP address of the server is provided only via glue. In that case, the nameservers in the parent zone are misconfigured.

Address: 2600:3c03::f03c:91ff:fe93:e369

Reverse name: ns2.r4l.com.

Name: ns2.r4l.com.

Notice
Nameserver not in NS records
This nameserver appears in the referrals from the parent zone nameservers, but doesn't appear in the NS records.

Name: ns1.r4l.com.

Powerup!
Nameserver addresses should have reverse names
According to RFC 1912, having reverse DNS configuration in place for every nameserver is a best practice that maximizes the chances of correct DNS operation. Further, some anti-spam techniques use reverse name resolution to allow traffic.
Powerup!
Nameserver A and AAAA records should have matching reverse records
According to RFC 1912, nameserver's PTR records must match their A and AAAA records to ensure maximum interoperability.

Backing DNS Queries

Below are all DNS queries we submitted during the zone inspection.

ID Server Transport Question Name Type Status

DNS Records

Correctly functioning name servers are necessary to hold and distribute information that's necessary for your domain name to operate correctly. Examples include converting names to IP addresses, determining where email should go, and so on. More recently, the DNS is being used to communicate email and other security policies.

Test passed
Everything seems to be well configured. Well done.

DNS Records

These are the results of individual DNS queries against your nameserver for common resource record types.

Name TTL Type Data
wgvc.com.     60 A 142.4.204.181            
www.wgvc.com.     60 CNAME vhost.r4l.com.            
vhost.r4l.com.     10800 A 142.4.204.181            
wgvc.com.     60 MX 10 mail.wgvc.com.            
wgvc.com.     60 NS ns2.r4l.com.            
wgvc.com.     10800 SOA ns1.r4l.com. support.register4less.com. 1754214040 3600 1800 604800 3600            
wgvc.com.     60 TXT "v=spf1 redirect=ahs4.r4l.com"            

Backing DNS Queries

Below are all DNS queries we submitted while inspecting the resource records.

ID Server Question Name Type Status

DNSSEC

DNSSEC is an extension of the DNS protocol that provides cryptographic assurance of the authenticity and integrity of responses; it's intended as a defense against network attackers who are able to manipulate DNS to redirect their victims to servers of their choice. DNSSEC is controversial, with the industry split largely between those who think it's essential and those who believe that it's problematic and unnecessary.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Useful DNSSEC Tools

Certification Authority Authorization

CAA (RFC 8659) is a new standard that allows domain name owners to restrict which CAs are allowed to issue certificates for their domains. This can help to reduce the chance of misissuance, either accidentally or maliciously. In September 2017, CAA became mandatory for CAs to implement.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Analysis

Powerup!
There is no CAA policy on this domain
CAA policies can be used to restrict which CAs are allowed to issue certificates for a hostname. As such, CAA can be used to enforce an organization-wide policy and to prevent issuance of unauthorized certificates. The CA/Browser forum requires CAs to consult CAA configuration during certificate issuance from September 2017.

Email (SMTP)

An internet hostname can be served by zero or more mail servers, as specified by MX (mail exchange) DNS resource records. Each server can further resolve to multiple IP addresses, for example to handle IPv4 and IPv6 clients. Thus, in practice, hosts that wish to receive email reliably are supported by many endpoint.

Test passed
Everything seems to be well configured. Well done.
Server Preference Operational STARTTLS TLS PKI DNSSEC DANE
mail.wgvc.com
142.4.205.1
PTR: gw1.ahs4.r4l.com
10
220 ahs4.r4l.com ESMTP Postfix (Ubuntu)
EHLO outbound.hardenize.com
250-ahs4.r4l.com
250-PIPELINING
250-SIZE 102400000
250-ETRN
250-STARTTLS
250-AUTH PLAIN LOGIN
250-ENHANCEDSTATUSCODES
250-8BITMIME
250-DSN
250 CHUNKING
QUIT
221 2.0.0 Bye
Supports STARTTLS. Not supported. Not applicable,
requires TLS.

Email TLS (SMTP)

Transport Layer Security (TLS) is the most widely used encryption protocol on the Internet. In combination with valid certificates, servers can establish trusted communication channels even with users who have never visited them before. Network attackers can't uncover what is being communicated, even when they can see all the traffic.

Test passed
Everything seems to be well configured. Well done.

TLS Configuration: mail.wgvc.com (142.4.205.1)

Encryption protocol version determines what features are
available for negotiation between client and server.
Supported protocols
TLS v1.3
TLS v1.2
Servers should always enforce their own cipher
suite preference, as that is the only approach
that guarantees that the best possible suite is
selected.
Server suite preference
Shows cipher suite configuration for this protocol version.TLS v1.3
Unknown preference
Suite: TLS_CHACHA20_POLY1305_SHA256
Suite ID: 0x1303
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_CHACHA20_POLY1305_SHA256
 256 bits (ECDHE 256 bits)
Suite: TLS_AES_128_GCM_SHA256
Suite ID: 0x1301
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_AES_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_AES_256_GCM_SHA384
Suite ID: 0x1302
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ecdh_x25519
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_AES_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Shows cipher suite configuration for this protocol version.TLS v1.2
Unknown preference
Suite: TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
Suite ID: 0xcca8
Cipher name: CHACHA20
Cipher strength: 256 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
 256 bits (ECDHE 256 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0xc02f
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 128 bits (ECDHE 256 bits)
Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0xc030
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: ECDHE_RSA
Key exchange strength: EC ecdh_x25519 (256 bits)
Forward secrecy: Yes
PRF: SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 256 bits (ECDHE 256 bits)
Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
Suite ID: 0x9e
Cipher name: AES
Cipher strength: 128 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 128 bits (DHE 2048 bits)
Suite: TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
Suite ID: 0x9f
Cipher name: AES
Cipher strength: 256 bits
Cipher block size: 128 bits
Cipher mode: AEAD
Key exchange: DHE_RSA
Key exchange strength: 2048 bits
Forward secrecy: Yes
PRF: SHA384
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
 256 bits (DHE 2048 bits)

Analysis

Good
TLS 1.2 supported
Good. This server supports TLS 1.2, which can provide strong security when configured correctly. This version of the TLS protocol is necessary to provide good security with a wide range of clients that don't yet support TLS 1.3.
Powerup!
Server doesn't enforce cipher suite preferences
Servers that don't enforce cipher suite preferences select the first cipher suite they support from the list provided by clients. This approach doesn't guarantee that best-possible cipher suite is negotiated.
Good
Strong key exchange detected
Excellent. All cipher suites on this server rely on strong key exchange. The sweet spot is 2048 bits for DHE and 256 bits for ECDHE. Putting ECDHE suites first guarantees best security and best performance.
Good
Server prefers forward secrecy and authenticated encryption suites
Excellent. Not only does this server enforce its server preference, but it also has at the top of the list suites that support both forward secrecy and authenticated encryption. This is the best TLS 1.2 can offer.
Notice
Relaxed TLS assessment criteria applied to SMTP on port 25
We apply relaxed assessment criteria when evaluating TLS configuration of SMTP servers on port 25. This is because most delivery agents fall back to delivering via plaintext on failure to negotiate encryption. Some configuration elements that can be abused to attack other ports and protocols (e.g., SSLv2 and export cipher suites) are penalized in the same way as for other protocols. We will review this policy in the future.
Good
DHE server parameter not reused
This server does not reuse the private value used for the Diffie-Hellman key exchange.

Email Certificates (SMTP)

A certificate is a digital document that contains a public key, some information about the entity associated with it, and a digital signature from the certificate issuer. It’s a mechanism that enables us to exchange, store, and use public keys. Being able to reliably verify the identity of a remote server is crucial in order to achieve secure encrypted communication.

Test passed
Everything seems to be well configured. Well done.

Certificate #1

Leaf certificate webmail.wgvc.com
Issuer: Let's Encrypt
Not Before: 16 Jul 2025 04:12:43 UTC
Not After: 14 Oct 2025 04:12:42 UTC (expires in 2 months 5 days)
Key: RSA 2048 bits
Signature: SHA256withRSA
 View details

Analysis

Good
Strong private key
Good. The private key associated with this certificate is secure.
Good
Strong signature algorithm
Good. This certificate uses a strong signature algorithm.
Good
Certificate matches hostname
Good. The provided certificate matches the expected hostnames.
Good
Certificate dates match
Good. The certificate is valid for use at this point of time.
Good
Certificate has not been revoked
Good. This certificate has not been revoked.
Good
Certificate satisfies Apple's CT compliance requirements
Good. This certificate satisfies Apple's CT requirements at present.

Certificate Chain

Leaf certificate
webmail.wgvc.com | c7af5e4
Not After: 14 Oct 2025 04:12:42 UTC (expires in 2 months 5 days)
Authentication: RSA 2048 bits (SHA256withRSA)
 View details
Intermediate certificate
R10 | 9d7c3f1
Not After: 12 Mar 2027 23:59:59 UTC (expires in 1 year 7 months)
Authentication: RSA 2048 bits (SHA256withRSA)
 View details
Root certificate
ISRG Root X1 | 96bcec0
Not After: 04 Jun 2035 11:04:38 UTC (expires in 9 years 9 months)
Authentication: RSA 4096 bits (SHA256withRSA)
 View details

Analysis

Good
Certificate chain is correct
Good. This chain contains all the right certificates and in the right order.

Email DANE (SMTP)

DNS-based Authentication of Named Entities (DANE) is a bridge between DNSSEC and TLS. In one possible scenario, DANE can be used for public key pinning, building on an existing publicly-trusted certificate. In another approach, it can be used to completely bypass the CA ecosystem and establish trust using DNSSEC alone.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

SPF

Sender Policy Framework (SPF) is a protocol that allows domain name owners to control which internet hosts are allowed to send email on their behalf. This simple mechanism can be used to reduce the effect of email spoofing and cut down on spam.

Test passed
Everything seems to be well configured. Well done.

SPF Policy Information Main policy

Host where this policy is located.Location wgvc.com
SPF version used by this policy.v spf1
This modifier is intended for consolidating both
authorizations and policy into a common set to be
shared within a single administrative domain.
redirect
ahs4.r4l.com

Analysis

Info
SPF policy found

Policy text: v=spf1 redirect=ahs4.r4l.com

Location: wgvc.com

Good
SPF policy is valid
Good. Your SPF policy is syntactically valid.
Good
Policy DNS lookups under limit
Good. Your policy stays under the limit of up to 10 DNS queries. The SPF specification Section 4.6.4. requires implementations to limit the total number of DNS queries. Policies that exceed the limit should not be used and may not work in practice.

Lookups: 7

SPF Policy Information Included policy

Host where this policy is located.Location ahs4.r4l.com
SPF version used by this policy.v spf1
This mechanism matches if the sending IP address
is one of the IP addresses that belong to the target
domain name. Matches both IPv4 and IPv6 addresses.
a
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
51.79.19.39
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
142.4.204.253
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
142.4.204.254
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
142.4.205.1
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
167.114.124.73/30
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
198.50.154.253
This mechanism matches if the sending IP address
is one of the MX hosts for the domain name.
mx
Evaluates SPF policy specified in another DNS location. This
directive is typically used to allow hosts controlled by
another organization.
include
r4l.com
This policy element always matches. It's normally used
at the end of a policy to specify the handling of hosts
that don't match earlier mechanisms.
-all

SPF Policy Information Included policy

Host where this policy is located.Location r4l.com
SPF version used by this policy.v spf1
This mechanism matches if the sending IP address
is one of the MX hosts for the domain name.
mx
This mechanism matches if the sending IP address
is one of the IP addresses that belong to the target
domain name. Matches both IPv4 and IPv6 addresses.
a
backup.r4l.com
This mechanism matches if the sending IP address
is one of the IP addresses that belong to the target
domain name. Matches both IPv4 and IPv6 addresses.
a
ns2.r4l.com
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
192.99.3.191
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
142.4.204.181
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
142.4.204.182
This mechanism tests whether the IP address being
tested is contained within a given IPv4 network.
ip4
142.4.204.184
This policy element always matches. It's normally used
at the end of a policy to specify the handling of hosts
that don't match earlier mechanisms.
-all

DMARC

Domain-based Message Authentication, Reporting, and Conformance (DMARC) is a scalable mechanism by which a mail-originating organization can express domain-level policies and preferences for message validation, disposition, and reporting, that a mail-receiving organization can use to improve mail handling.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

MTA Strict Transport Security

SMTP Mail Transfer Agent Strict Transport Security (MTA-STS) is a mechanism enabling mail service providers to declare their ability to receive Transport Layer Security (TLS) secure SMTP connections, and to specify whether sending SMTP servers should refuse to deliver to MX hosts that do not offer TLS with a trusted server certificate.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

SMTP TLS Reporting

SMTP TLS Reporting (RFC 8460), or TLS-RPT for short, describes a reporting mechanism and format by which systems sending email can share statistics and specific information about potential failures with recipient domains. Recipient domains can then use this information to both detect potential attacks and diagnose unintentional misconfigurations. TLS-RPT can be used with DANE or MTA-STS.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

HTTP (80)

To observe your HTTP implementation, we submit a request to the homepage of your site on port 80, follow all redirections (even when they take us to other domain names), and record the returned HTTP headers.

Test passed
Everything seems to be well configured. Well done.

URL: http://wgvc.com/

1
http://wgvc.com/
HTTP/1.1 301 Moved Permanently
2
http://www.wgvc.com/
HTTP/1.1 200 OK

URL: http://www.wgvc.com/

1
http://www.wgvc.com/
HTTP/1.1 200 OK

HTTP (443)

To observe your HTTPS implementation, we submit a request to the homepage of your site on port 443, follow all redirections (even when they take us to other domain names), and record the returned HTTP headers. We use the most recent set of headers returned from the tested hostname for further tests such as HSTS and HPKP.

Test failed
We've detected serious problems that require your immediate attention.

URL: https://wgvc.com/

Analysis

Warning
HTTP connection failed
We were not able to successfully complete this request.

Message: (internal_error) Received fatal alert: internal_error

URL: https://www.wgvc.com/

Analysis

Warning
HTTP connection failed
We were not able to successfully complete this request.

Message: (internal_error) Received fatal alert: internal_error

Analysis

Error
No HTTPS service
This server provides only unencrypted (plaintext) HTTP service. Its traffic is thus not protected and fully exposed to monitoring and modification in transit. It provides no confidentiality and exposes the visitors to persistent tracking.

WWW TLS

Transport Layer Security (TLS) is the most widely used encryption protocol on the Internet. In combination with valid certificates, servers can establish trusted communication channels even with users who have never visited them before. Network attackers can't uncover what is being communicated, even when they can see all the traffic.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

TLS Configuration: wgvc.com (142.4.204.181)

Analysis

Error
TLS connection failed
We failed to connect to the server using TLS.

TLS Configuration: www.wgvc.com (142.4.204.181)

Analysis

Error
TLS connection failed
We failed to connect to the server using TLS.

WWW Certificates

A certificate is a digital document that contains a public key, some information about the entity associated with it, and a digital signature from the certificate issuer. It’s a mechanism that enables us to exchange, store, and use public keys. Being able to reliably verify the identity of a remote server is crucial in order to achieve secure encrypted communication.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

DANE (443)

DNS-based Authentication of Named Entities (DANE) is a bridge between DNSSEC and TLS. In one possible scenario, DANE can be used for public key pinning, building on an existing publicly-trusted certificate. In another approach, it can be used to completely bypass the CA ecosystem and establish trust using DNSSEC alone.

Feature not applicable, not implemented, or disabled
Your server doesn't support this feature.

Cookies

Cookies are small chunks of text that are sent between your browser and a website. They are often essential to the operation of the site and sometimes contain sensitive information. Session cookies sent from secure sites must be explicitly marked as secure to prevent being obtained by active network attackers.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

HTML Content

On virtually all web sites, HTML markup, images, style sheets, JavaScript, and other page resources arrive not only over multiple connections but possibly from multiple servers and sites spread across the entire Internet. For a page to be properly encrypted, it’s necessary that all the content is retrieved over HTTPS. In practice, that’s very often not the case, leading to mixed content security problems.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) vastly improves security of the network encryption layer. With HSTS enabled, browsers no longer allow clicking through certificate warnings errors, which are typically trivial to exploit. Additionally, they will no longer submit insecure (plaintext) requests to the site in question, even if asked.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

HSTS Policy  Main host

URL from which this policy was obtained.Location https://wgvc.com

HTTP Public Key Pinning

HTTP Public Key Pinning (HPKP) enables site operators to restrict which certificates are considered valid for their domain names. With a valid HPKP configuration, sites can defeat man in the middle (MITM) attacks using fraudulent or misissued certificates. HPKP is an advanced feature, suitable for use by only high-profile web sites.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

Content Security Policy

Content Security Policy (CSP) is a security mechanism that allows web sites control how browsers process their pages. In essence, sites can restrict what types of resources are loaded and from where. CSP policies can be used to defend against cross-site scripting, prevent mixed content issues, as well as report violations for investigation.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

Subresource Integrity

Subresource Integrity (SRI) is a new standard that enables browsers to verify the integrity of embedded page resources (e.g., scripts and stylesheets) when they are loaded from third-party web sites. With SRI deployed, remote resources can be used safely, without fear of them being modified by malicious parties.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

Expect CT

Expect-CT is a deprecated response HTTP header designed to enable web sites to monitor problems related to their Certificate Transparency (CT) compliance. Should any CT issues arise, browsers that supported this header will submit reports to the specified reporting endpoint. Chrome was the browser that introduced support for this response header, but later deprecated it and removed it in version 107.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

Frame Options

The X-Frame-Options header controls page framing, which occurs when a page is incorporated into some other page, possibly on a different site. If framing is allowed, attackers can employ clever tricks to make victims perform arbitrary actions on your site; they do this by showing their web site while forwarding the victim's clicks to yours.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

XSS Protection

Some browsers ship with so-called XSS Auditors, built-in defenses against XSS. Although these defenses work against simple reflective XSS attacks, they can be abused by skillful attackers to add weaknesses to otherwise secure web sites. These dangers are present in both filtering and blocking modes. At this time, the Safari browser ships with its XSS defenses enabled by default. For this reason, the best approach is to explicitly disable this functionality.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.

Content Type Options

Some browsers use a technique called content sniffing to override response MIME types provided by HTTP servers and interpret responses as something else (usually HTML). This behavior, which could potentially lead to security issues, should be disabled by attaching an X-Content-Type-Options header to all responses.

Unable to test (dependency failed)
This test depends on the results of another test, which hasn't completed.